Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Polyploidy influences plant-environment interactions in quaking aspen (Populus tremuloides Michx.).

Identifieur interne : 000D32 ( Main/Exploration ); précédent : 000D31; suivant : 000D33

Polyploidy influences plant-environment interactions in quaking aspen (Populus tremuloides Michx.).

Auteurs : Burke T. Greer [États-Unis] ; Christopher Still [États-Unis] ; Grace L. Cullinan [États-Unis] ; J Renée Brooks [États-Unis] ; Frederick C. Meinzer [États-Unis]

Source :

RBID : pubmed:29036397

Descripteurs français

English descriptors

Abstract

Quaking aspen (Populus tremuloides Michx.), a widespread and keystone tree species in North America, experienced heat and drought stress in the years 2002 and 2003 in the southwestern United States. This led to widespread aspen mortality that has altered the composition of forests, and is expected to occur again if climate change continues. Understanding interactions between aspen and its environments is essential to understanding future mortality risk in forests. Polyploidy, which is common in aspen, can modify plant structure and function and therefore plant-environment interactions, but the influence of polyploidy on aspen physiology is still not well understood. Furthermore, the ploidy types of aspen have different biogeographies, with triploids being most frequent at lower latitudes in generally warmer and drier climates, while the northerly populations are virtually 100% diploid. This suggests that ploidy-environment interactions differ, and could mean that the ploidy types have different vulnerabilities to environmental stress. In this study, to understand aspen ploidy-environment interactions, we measured 38 different traits important to carbon uptake, water loss and water-use efficiency in diploid and triploid aspen in Colorado. We found that triploid aspen had lower stand density, and greater leaf area, leaf mass, leaf mass per area, percent nitrogen content, chlorophyll content and stomatal size. These differences corresponded to greater potential net carbon assimilation (A, measured using A/Ci curves, and chlorophyll fluorescence) and stomatal conductance (gs) in triploids than diploids. While triploid aspen had higher intrinsic water-use efficiency (iWUE, calculated from measurements of δ13C in leaf tissue), they also had greater potential water loss from higher measured gs and lower stomatal sensitivity to increasing vapor pressure deficit. Therefore, despite greater iWUE, triploids may have lower resilience to climate-induced stress. We conclude that ploidy type strongly influences physiological traits and function, and mediates drought stress responses in quaking aspen.

DOI: 10.1093/treephys/tpx120
PubMed: 29036397
PubMed Central: PMC6527095


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Polyploidy influences plant-environment interactions in quaking aspen (Populus tremuloides Michx.).</title>
<author>
<name sortKey="Greer, Burke T" sort="Greer, Burke T" uniqKey="Greer B" first="Burke T" last="Greer">Burke T. Greer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Still, Christopher" sort="Still, Christopher" uniqKey="Still C" first="Christopher" last="Still">Christopher Still</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cullinan, Grace L" sort="Cullinan, Grace L" uniqKey="Cullinan G" first="Grace L" last="Cullinan">Grace L. Cullinan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Rice University, Biosciences at Rice, Ecology and Evolutionary Biology Department, 6100 Main St. Houston, TX 77005, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rice University, Biosciences at Rice, Ecology and Evolutionary Biology Department, 6100 Main St. Houston, TX 77005</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brooks, J Renee" sort="Brooks, J Renee" uniqKey="Brooks J" first="J Renée" last="Brooks">J Renée Brooks</name>
<affiliation wicri:level="2">
<nlm:affiliation>US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meinzer, Frederick C" sort="Meinzer, Frederick C" uniqKey="Meinzer F" first="Frederick C" last="Meinzer">Frederick C. Meinzer</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Service Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29036397</idno>
<idno type="pmid">29036397</idno>
<idno type="doi">10.1093/treephys/tpx120</idno>
<idno type="pmc">PMC6527095</idno>
<idno type="wicri:Area/Main/Corpus">001125</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001125</idno>
<idno type="wicri:Area/Main/Curation">001125</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001125</idno>
<idno type="wicri:Area/Main/Exploration">001125</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Polyploidy influences plant-environment interactions in quaking aspen (Populus tremuloides Michx.).</title>
<author>
<name sortKey="Greer, Burke T" sort="Greer, Burke T" uniqKey="Greer B" first="Burke T" last="Greer">Burke T. Greer</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Still, Christopher" sort="Still, Christopher" uniqKey="Still C" first="Christopher" last="Still">Christopher Still</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cullinan, Grace L" sort="Cullinan, Grace L" uniqKey="Cullinan G" first="Grace L" last="Cullinan">Grace L. Cullinan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Rice University, Biosciences at Rice, Ecology and Evolutionary Biology Department, 6100 Main St. Houston, TX 77005, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rice University, Biosciences at Rice, Ecology and Evolutionary Biology Department, 6100 Main St. Houston, TX 77005</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brooks, J Renee" sort="Brooks, J Renee" uniqKey="Brooks J" first="J Renée" last="Brooks">J Renée Brooks</name>
<affiliation wicri:level="2">
<nlm:affiliation>US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meinzer, Frederick C" sort="Meinzer, Frederick C" uniqKey="Meinzer F" first="Frederick C" last="Meinzer">Frederick C. Meinzer</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Service Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Service Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="eISSN">1758-4469</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon Isotopes (metabolism)</term>
<term>Gene-Environment Interaction (MeSH)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Stomata (genetics)</term>
<term>Plant Stomata (physiology)</term>
<term>Polyploidy (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Water (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Eau (physiologie)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Interaction entre gènes et environnement (MeSH)</term>
<term>Isotopes du carbone (métabolisme)</term>
<term>Photosynthèse (physiologie)</term>
<term>Polyploïdie (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Stomates de plante (génétique)</term>
<term>Stomates de plante (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Isotopes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Stomata</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Isotopes du carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Eau</term>
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Stomates de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Plant Stomata</term>
<term>Populus</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene-Environment Interaction</term>
<term>Polyploidy</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Interaction entre gènes et environnement</term>
<term>Polyploïdie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Quaking aspen (Populus tremuloides Michx.), a widespread and keystone tree species in North America, experienced heat and drought stress in the years 2002 and 2003 in the southwestern United States. This led to widespread aspen mortality that has altered the composition of forests, and is expected to occur again if climate change continues. Understanding interactions between aspen and its environments is essential to understanding future mortality risk in forests. Polyploidy, which is common in aspen, can modify plant structure and function and therefore plant-environment interactions, but the influence of polyploidy on aspen physiology is still not well understood. Furthermore, the ploidy types of aspen have different biogeographies, with triploids being most frequent at lower latitudes in generally warmer and drier climates, while the northerly populations are virtually 100% diploid. This suggests that ploidy-environment interactions differ, and could mean that the ploidy types have different vulnerabilities to environmental stress. In this study, to understand aspen ploidy-environment interactions, we measured 38 different traits important to carbon uptake, water loss and water-use efficiency in diploid and triploid aspen in Colorado. We found that triploid aspen had lower stand density, and greater leaf area, leaf mass, leaf mass per area, percent nitrogen content, chlorophyll content and stomatal size. These differences corresponded to greater potential net carbon assimilation (A, measured using A/Ci curves, and chlorophyll fluorescence) and stomatal conductance (gs) in triploids than diploids. While triploid aspen had higher intrinsic water-use efficiency (iWUE, calculated from measurements of δ13C in leaf tissue), they also had greater potential water loss from higher measured gs and lower stomatal sensitivity to increasing vapor pressure deficit. Therefore, despite greater iWUE, triploids may have lower resilience to climate-induced stress. We conclude that ploidy type strongly influences physiological traits and function, and mediates drought stress responses in quaking aspen.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29036397</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1758-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2018</Year>
<Month>04</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Polyploidy influences plant-environment interactions in quaking aspen (Populus tremuloides Michx.).</ArticleTitle>
<Pagination>
<MedlinePgn>630-640</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/treephys/tpx120</ELocationID>
<Abstract>
<AbstractText>Quaking aspen (Populus tremuloides Michx.), a widespread and keystone tree species in North America, experienced heat and drought stress in the years 2002 and 2003 in the southwestern United States. This led to widespread aspen mortality that has altered the composition of forests, and is expected to occur again if climate change continues. Understanding interactions between aspen and its environments is essential to understanding future mortality risk in forests. Polyploidy, which is common in aspen, can modify plant structure and function and therefore plant-environment interactions, but the influence of polyploidy on aspen physiology is still not well understood. Furthermore, the ploidy types of aspen have different biogeographies, with triploids being most frequent at lower latitudes in generally warmer and drier climates, while the northerly populations are virtually 100% diploid. This suggests that ploidy-environment interactions differ, and could mean that the ploidy types have different vulnerabilities to environmental stress. In this study, to understand aspen ploidy-environment interactions, we measured 38 different traits important to carbon uptake, water loss and water-use efficiency in diploid and triploid aspen in Colorado. We found that triploid aspen had lower stand density, and greater leaf area, leaf mass, leaf mass per area, percent nitrogen content, chlorophyll content and stomatal size. These differences corresponded to greater potential net carbon assimilation (A, measured using A/Ci curves, and chlorophyll fluorescence) and stomatal conductance (gs) in triploids than diploids. While triploid aspen had higher intrinsic water-use efficiency (iWUE, calculated from measurements of δ13C in leaf tissue), they also had greater potential water loss from higher measured gs and lower stomatal sensitivity to increasing vapor pressure deficit. Therefore, despite greater iWUE, triploids may have lower resilience to climate-induced stress. We conclude that ploidy type strongly influences physiological traits and function, and mediates drought stress responses in quaking aspen.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Greer</LastName>
<ForeName>Burke T</ForeName>
<Initials>BT</Initials>
<AffiliationInfo>
<Affiliation>Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Still</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Forest Ecosystems and Society, College of Forestry, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cullinan</LastName>
<ForeName>Grace L</ForeName>
<Initials>GL</Initials>
<AffiliationInfo>
<Affiliation>Rocky Mountain Biological Laboratory, PO Box 519, Crested Butte, CO 81224, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Rice University, Biosciences at Rice, Ecology and Evolutionary Biology Department, 6100 Main St. Houston, TX 77005, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brooks</LastName>
<ForeName>J Renée</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>US Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division, 200 SW 35th St., Corvallis, OR 97333, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meinzer</LastName>
<ForeName>Frederick C</ForeName>
<Initials>FC</Initials>
<AffiliationInfo>
<Affiliation>USDA Forest Service Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>EPA999999</GrantID>
<Agency>Intramural EPA</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059647" MajorTopicYN="Y">Gene-Environment Interaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011123" MajorTopicYN="Y">Polyploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>06</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>08</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29036397</ArticleId>
<ArticleId IdType="pii">4237730</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/tpx120</ArticleId>
<ArticleId IdType="pmc">PMC6527095</ArticleId>
<ArticleId IdType="mid">NIHMS1521016</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2000 Apr;51(345):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2001 Jul;21(10):683-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11446997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Apr;89(4):451-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12096806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1997 Aug-Sep;17(8_9):501-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Dec;100(6):1347-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17901058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 Mar;155(3):441-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18224341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Nov;17(22):4827-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1737-1748</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Nov;184(3):721-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2010 Aug 17;8(8):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20808953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2011 Feb;107(2):209-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21188527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):233-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22167807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e48406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23119006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Jan;64(2):495-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23264516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 May;19(5):1526-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23504823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Apr;19(4):1188-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23504895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2013;140(2-4):270-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23751292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1980 Jun;149(1):78-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24306196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2014 May;175(1):11-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24394863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1991 Mar;27(3):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24414689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr;164(4):1556-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24578506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jun;202(4):1105-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24754325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Jun;34(6):585-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24898219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2015 Apr 19;370(1666):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25750234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2016 Jul;103(7):1326-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27370313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2016 Jul;103(7):1139-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27480249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Mar;93(2):201-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Mar;93(2):208-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313609</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Colorado</li>
<li>Oregon</li>
<li>Texas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Greer, Burke T" sort="Greer, Burke T" uniqKey="Greer B" first="Burke T" last="Greer">Burke T. Greer</name>
</region>
<name sortKey="Brooks, J Renee" sort="Brooks, J Renee" uniqKey="Brooks J" first="J Renée" last="Brooks">J Renée Brooks</name>
<name sortKey="Cullinan, Grace L" sort="Cullinan, Grace L" uniqKey="Cullinan G" first="Grace L" last="Cullinan">Grace L. Cullinan</name>
<name sortKey="Cullinan, Grace L" sort="Cullinan, Grace L" uniqKey="Cullinan G" first="Grace L" last="Cullinan">Grace L. Cullinan</name>
<name sortKey="Greer, Burke T" sort="Greer, Burke T" uniqKey="Greer B" first="Burke T" last="Greer">Burke T. Greer</name>
<name sortKey="Meinzer, Frederick C" sort="Meinzer, Frederick C" uniqKey="Meinzer F" first="Frederick C" last="Meinzer">Frederick C. Meinzer</name>
<name sortKey="Still, Christopher" sort="Still, Christopher" uniqKey="Still C" first="Christopher" last="Still">Christopher Still</name>
<name sortKey="Still, Christopher" sort="Still, Christopher" uniqKey="Still C" first="Christopher" last="Still">Christopher Still</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29036397
   |texte=   Polyploidy influences plant-environment interactions in quaking aspen (Populus tremuloides Michx.).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29036397" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020